
International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 1018
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Comparative Study on the Software
Methodologies for Effective Software Development

Sabbir M Saleh, M Ashikur Rahman, K Ali Asgor

Abstract— The software development models, which are also known as Software Development Life Cycle. There are too many software
development models now, mainly waterfall, spiral, Rapid Action Development etc.; now a days Scrum, Kanban and Extreme Programming
are widely used, which are in Agile Family; by the software industries. These prototypes have advantages and disadvantages as well. In
this paper we will discuss about waterfall, Scrum, Kanban and Extreme Programming; the main objective of this investigation is to
symbolize different models of software developments and make a judgement amongst them to show the functionalities of each model
separately and thoroughly. And we hope that this study will help the software industries to take the correct decisions about software
development models before running a development for new software.

Index Terms— Software Management Methods, Software Development, SDLC, Comparison between four models of Software
Engineering, Scrum, Kanban, XP.

—————————— ——————————

1 INTRODUCTION

oftware development methods and life cycles are termed
in the software engineering, which defines the shapes
through which software develops. The development atten-

tions on the product. It’s defining the stage through which a
software authorization after it launches. It’s to be made to
when software arrives into processes and finally deployed [1].
A software process model is an abstract demonstration of the
design, or characterization of the software procedure [2]. In
software improvement, process models are applied to accom-
plish various concerns associated with price, time period, and
quality and fluctuating requirements of customers’ etc. The
reasons of project failure could be project development team,
dealers, clients and other stakeholders; but the most common
causes for project failure are embedded in the project man-
agement method itself and the aligning of Information Tech-
nology with structural philosophies [3].A literature review of
developments in software growth show that most software
tasks are deliberated as partial failures due to difficulties as-
cending from the software development methods [4][5]and
schemes were providing for successful the software process
regardless of the actual process models used. We will research
the process models based on some parameters to develop an
effective software.

2 BACKGROUND STUDY
Several number of popular software development methodolo-
gies have been presented in the last couple of years such as -

Agile development is appealed to be an innovative and recep-
tive effort to address users’ needs concentrated on the prere-
quisite to distribute applicable working business applications
faster and inexpensive. The software is usually provided in
incremental or iterative fashion. The agile expansion ap-
proaches are typically concerned with continuing user in-
volvement through the application of design teams and spe-
cial workspaces. The provided increases are likely to be minor
and inadequate to little supply stages to confirm quick end.
The organization strategy consumed relies on the imposition
of time boxing, the stringent supply to goal which edicts the
possibilities, the collection of performances to be provided and
the alterations to encounter the targets. Agile development is
mostly convenient in situations that change gradually and
execute difficulties of limited results. Agile approaches sup-
port the conception of parallel increase and distribution within
an overall intentional framework.

It is method to increase, based on the progress and provision
of very insignificant augmentations of performance. It trusts
on continual code enhancement, user contribution in the de-
velopment team and pair sensible programming. It can be
problematic to keep the interest of consumers who are in-
volved in the process. Team members may be incompatible to
the penetrating participation that describes agile approaches.
Highlighting fluctuations can be problematic where there are
several stakeholders. Agreements may be a difficult as with
other methods to constant development. [6]
An enormous number of journalists release and technical
journals treat the Scrum as the greatest method to software
development. However, the original Scrum method is not ac-
ceptable for successively work in agile environment in a net-
working management. Due to that, researchers lengthy the
Scrum-based model [19] and the Kanban methodology to
make the most of both and find a more acceptable method for
working software development in powerfully scattered agile
background.

A Software process model is an abstract representation to de-

S

————————————————
• Sabbir M Saleh is currently a Lecturer at Department of Computer Science

and Engineering at University of South Asia, Bangladesh, PH-
01785547626. E-mail: sabbir@southasia-uni.org

• M Ashikur Rahman is currently a Lecturer at Department of Computer
Science and Engineering at University of South Asia, Bangladesh, PH-
01703259429. E-mail: ashik@southasia-uni.org

• K Ali Asgor is currently an Adjunct Lecturer at Department of Computer
Science and Engineering at University of South Asia, Bangladesh, PH-
01711873008. E-mail: aliasgorpavel@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 1019
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

fine the process from a certain standpoint. [2] There are vari-
ous types of general models for software developments. This
study will view the following four models:

1. The Waterfall model
2. Scrum
3. Kanban Agile Process Models
4. XP

Prescriptive software process models have been applied for
many years in an effort to bring order and structure to soft-
ware development. Each of these conservative prototypes
suggests a slightly dissimilar procedure flow, but all accom-
plish the similar set of common framework actions –

- Communication
- Planning
- Modeling
- Construction
- Deployment [8]

3 SOFTWARE PROCESS MODELS

The Waterfall Model
The primogenital pattern for software engineering is the Wa-
terfall model, sometimes called the classic life cycle, suggests
unorganized, progressive method to software development.
One phase initiates when another ends. Useful process model
in circumstances where requirements are well-defined and
constant, and work is to be proceeding to accomplishment in a
direct mode.

Fig. 1. General Overview of the Waterfall Model

Communication: Project Initiation, Requirements
Gathering and Analysis.
Planning: Estimating, Scheduling, and Following.
Modeling: System Analysis and Design.
Construction: Coding and Testing.
Deployment: Delivery, Support and regular Maintenance,
Feedback.

Advantages of the Waterfall Model
• Identifies systems requirements long before

programming begins

• Minimized changes to the requirements as the project
proceeds.

• Easy to recognize and appliance.
• Generally cast-off and acknowledged.
• Categorizes deliverables and indicators.
• Mechanisms fit on advanced produces and feeble

developer teams.

Disadvantage of the Waterfall Model
• It is often difficult for the customer to state all re-

quirements explicitly
• The customer must be patient
• Idealized, doesn’t match reality well.
• Problematic and exclusive to make variations to

papers.
• Significant clerical upstairs, expensive for small teams

and ventures. [9]

Agile Process Models
Contrasting the waterfall model, agile software development
is iterative or cumulative. In agile software development
(ASD) requirements and solutions are said to advance thru the
development of the project. [10]

• An agile process must be flexible
• It must adapt cumulatively
• Involves customer feedback
• An effective substance for customer feedback is an

working prototype or a portion of an functioning
coordination

• Software augmentations must be provided in short
time episodes

– Assists the customer to assess the software
augmentation frequently

– Deliver basic feedback to the software team

This study will view the following Agile Process models:

- Scrum
- Kanban
- XP

Scrum
Scrum was established by Jeff Sutherland in 1993 [11] and its
objective is to be an improvement and organization methodol-
ogy that follows the principles of the agile methodology. The
Scrum team is collected by [12]:
Team: it’s the development project team, poised by up to ten
developers in which each member has a precise skill. Howev-
er, members are not banned from performing task different
from their skill. Thus, the team will become more combined
and teams’ members will know better the software, minimaliz-
ing the impact of another member’s sacking.

• Product owner. He is the one with the responsibility on the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 1020
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

software functionality specification and to solve any doubts
that might arise during development. He is the client’s repre-
sentative that must watch the project closely and help in the
construction of a software that answers completely to the
client’s needs.

• Scrum master. He is the in charge to lead the team and to
evade any dashes that might arise during the development.
An obstacle is something that might hamper a member from
accomplishment his work. For illustration, requests to perform
happenings not related to the project, problems in the test
server, complications with the technology and unplanned pre-
requisites might be examples of sprints that might cause prob-

lem
s to
the
spri
nt.

Scr
um
is
bas
ed
on
pra

ctices represented by –
• Daily meetings,
• Sprint planning meetings,
• Sprint review meeting,
• Backlog sorting and
• Release presentation [13]

Fig. 2. Sprint [14]

Advantages of Scrum Methodology
• It is easier to distribute quality software in a planned

time.
• Due to tiny sprints and continual response, it suits

easier to handle with the variations.
• Daily scrum meetings make it promising to measure

specific production.

• Alike any other agile approach, this is also iterative in
nature. It needs constant response from the customer.

Disadvantages of Scrum Methodology
• If the development team members are not dedicated,

the project will either never complete or fail.
• It is good for small, fast moving developments as it

works well only with trivial development team.
• This approach needs qualified team members merely.

If the team contains of people who are beginners, the
project cannot be accomplished in deadline.

• If any of the members leave during a development it
can have a massive inverse consequence on the project
development.

Kanban
Kanban accomplishes the Lean philosophy in practice [15],
[16] and is one of the key operation management tools in Lean
manufacturing [17]. It drives project teams to visualize the
workflow, limit work in progress (WIP) at each workflow
stage, and quantity the cycle time [18].

Advantages of Kanban Methodology

• Improve portfolio and decrease product
undesirability.

• Diminishes surplus and clash
• Delivers tractability in manufacture
• Intensifications productivity
• Condenses total price
• Progresses stream
• Avoids failure

Disadvantages of Kanban Methodology
• It is less operative in shared-resource circumstances
• Flows in blend or mandate cause problems because

Kanban accept sun changing monotonous
manufacture policies.

• Kanban in itself doesn't reject inconsistency, so
changeable and lifelong down times could dislocate
the system; poor quality in terms of clash and rephrase
also mark its good running. Kanban systems are not
suitable for industrial locations with short
manufacture runs.

• An interruption in the Kanban system cans
consequence in the complete line end.

XP-Extreme Programming
Extreme Programming is one of the popular Agile Practices. It
has already been established to be very effective at many or-
ganizations of all different sizes and productions global. Ex-
treme Programming advances a software development in five
essential ways-

• Communication
• Effortlessness

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 1021
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

• Feedback
• Respect and
• Courage

Advantages of XP Methodology
• Client priority increase the chance that the software

manufactured will actually encounter the
requirements of the consumers.

• The focus on minor, incremental relief declines the risk
on development.

• By presenting that a method works.
• By setting functionality in the hands of the customers.
• Incessant testing and combination assistances to raise

the superiority of development.
• XP is friendly to programmers who usually are

grudging accepting a software method.

Disadvantages of XP Methodology

• XP is geared to a solo development, established and
sustained by a sole team.

• XP is incompetent in surroundings where a client or
administrator claims on a complete requirement or
strategy earlier they start programming.

• XP is incompetent in surroundings where
programmers are disconnected geologically.

XP is incompetent to work with arrangements that have ex-
pandable matters.

4 RELATED WORK
According to Holman (2002), job design, alongside with job
control, has a optimistic alliance with worker well-being. Ad-
ditionally, even though the author hypothesizes that a worker
in a business can promote from job monitoring, a high level of
monitoring has an unenthusiastic effect on interests (Chalykoff
& Kochan, 1989; Holman, 2002). Human resources practices
and team mentor support factors are designed to better repro-
duce supervisory aspects in administrative center. High-level
support from administration with higher control of job design
is a foremost issue in manipulating employee well-being
(Holman, 2002; Kular, Gatenby, Rees, Soane, & Truss, 2008).
Research on organizational behaviorism has also shown that
the phases of employee well-being absolutely influence specif-
ic’s job fulfillment (Wright & Bonett, 2007).

Workers and developers feel happy at workplaces when their
job distinctiveness equivalent their own qualities (Warr, 2007).
Precedent research has exposed that agile practices could ef-
fectively encourage developers and amplify their job fulfill-
ment (Melnik & Maurer, 2006; Sharp & Robinson, 2008; Tes-
sem & Maurer, 2007), as they are developed to ensemble
people’s requirements. For example, by using user story cards
for the period of planning game activity, small dollops of func-

tionality are discussed recurrently with consumer, allowing
team members to preserve their sensitivity of passion (Syed-
Abdullah et al., 2006). In addition, throughout pair program-
ming, programmers are requisite to solve programming tribu-
lations in pairs and habitually substitute associates, both of
which endorse teamwork and a sense of project tenure sur-
rounded by other team members, and consequently augment
their well-being. Agile job distinctiveness, given that they
place importance on the value of unremitting criticism and
numerous liberate, are able to diminish hopelessness amongst
workers and developers. This is as the practices endorse
communal surroundings, which boosts members to have a
clear track towards achieving development targets. Therefore,
it is hypothesized that agile teams will practice a superior rank
of well-being measured to non-agile teams. They have chosen
some parameters to measure the effectiveness of these metho-
dologies for software development. But unfortunately they
did not consider the effect of required time for software devel-
opment.

5 PROBLEM STATEMENT
There are couples of software methodologies which are widely
used by many software development organizations. But
sometimes, organizations especially new companies face prob-
lem to select the software methodology for a specific software
project. Wrong selection of software development methodolo-
gies often makes those project failed.

As we see in section III (related work), there are several num-
ber of works have been presented for comparative study of
software methodologies. But in our investigation we find sev-
eral flaws or shortcomings for evaluating the software metho-
dologies. For example, we find that many critical parameters
for examples Communication, Requirement Specifications,
Cost, Resource Control, Simplicity, Risk Analysis, Feedback
from User, Customer Priority, Precondition, Elasticity, Practi-
cality, Implementation, Usability etc. - are not considered in
their study. So that sometimes their suggestion for choosing
the software development methodologies might not effective
in this regard. Besides, their way of measuring the evaluating
parameters are not correct, since they did not define the rele-
vant values of those parameters. Additionally, it is not men-
tion clearly how these values of the relevant parameters come
from.

Therefore, missing parameters are required to be consi-
dered for a proper comparative study of the software devel-
opment methodologies.

6 PROPOSAL FOR COMPARING SOFTWARE
DEVELOPMENT METHODOLOGIES

In our research, we are going to deliberate about which
process to choose for best methodology to deliver the quality
software to the customer.
Before determining the process to be used, we should get solu-
tion for some queries.

1. How steady are the requirements?

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 1022
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

2. Who is the ultimate consumer for the software?
3. What is the opportunity of the product?
4. Where are the Development teams placed?

Our Development is to discuss for the prerequisite given by
the customer which methodology to be used. Let us have a
comparative study which process will be active in the below
processes and the Advantages & Disadvantages of choosing
the model.

For this research and comparative studies between different
Software Methodologies we have chosen four types of metho-
dologies, which are The Waterfall Model, Scrum, Kanban and
XP.

We have selected these methodologies, because these four
models are regularly followed by several software develop-
ment industries. In these process models Waterfall is much
known to all, and now Agile is very popular globally, and
Scrum, Kanban and XP are the family members of Agile Soft-
ware Development (ASD).

Waterfall Model is a further name for the more long-
established approach to software development. It’s called ‘wa-
terfall’ as this category of development is often planned using
a Gantt chart – developers complete one segment before
touching on to the next segment. In Waterfall, it’s rarely aim to
return to a segment once it’s finished. As corresponding,
better gets whatever doing right the first time. This process is
exceedingly precarious, often more expensive and usually
fewer professional than further Agile methods.

Scrum process carries far less risk than Waterfall processes. It
focuses on providing fully-tested, autonomous, precious,
small features. As corresponding, it’s diversifying the risk – if
one feature goes erroneous, it should not get in touch with a
new characteristic. With that said, developers still plan work
in iterations and they will still release at the end of iteration.

Kanban refined as a sub constituent of the Toyota Production
System. In Kanban the system is visualized: work is wrecked
down into small, disconnected items and written on a card
which is spellbound to a section; the board has singular col-
umns and as the work progresses through different phases the
card is moved consequently. In Kanban the quantity of objects
that can be in progress at any one time is exactingly imperfect.
The usual time it takes to absolute an item is tracked and op-
timized so that the process becomes as efficient and predicta-
ble as possible. The eradication of misuse is overriding.

In conjunction with shorter iterations, some other important
things which distinguish XP from Scrum are: XP teams work
on items in an authoritarian precedence classify while a Scrum
might not unavoidably tackle each item in precedence order
once in sprint. XP teams can fetch new objects of effort into
iteration and switch out objects of corresponding size if the
consumer chooses on a new precedence. In conditions of rela-
tionships, the responsibility of the client in XP is very parallel
to that of the Product Owner in Scrum – in that they assist to

write user stories, priorities them and are always accessible to
developers – despite the fact that less well distinct. Mutually
Scrum and XP maintain a daily stand up meeting.
The parameters we have identified for distinguishing these
methodologies are:

• Communication
• Requirement Specifications
• Cost
• Resource Control
• Simplicity
• Risk Analysis
• Feedback from User
• Customer Priority
• Precondition
• Elasticity
• Practicality Implementation
• Usability

We have selected these parameter sets to optimize a model
solution to a target solution.

By these parameters we can evaluate a better methodology
of software development for industries and software devel-
opment firms.

7 DISCUSSION AND ANALYSIS OF THE STUDY

ABC is a trivial organization that required to transition their
complete development team to Agile. It was an informal alte-
ration to the applications people, tougher to the maintenance
people (until they know about Kanban). The ones in the in-
termediate were the mainframe developers. This organization
is in insurance, a production that has lots of legacy backend
systems.

Our team has met mainframe developers in our Agile explora-
tions before who were impervious to an Agile method. The
details are many but habitually based on the limitation that
legacy systems take lengthier to modification and mainframe
systems in individual are not adaptable to Agile environment.

In this specific case, our team were enjoyably astonished to see
attention, eagerness, at beginning a project using the agile me-
thod even though the systems complicated were COBOL,
CICS and RPG. Here we want to abstract the knowledge by
relating what Agile practices we executed, what experiments
we faced and what accomplishments we saw.

Standard Agile Performs

• The development team was small: 3 programmers and
a QA also playing the Scrum Master character. There
was an enthusiastic Product Owner who was a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 1023
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Business Analyst acquainted with the problem to be
solved. The sponsor, a Product Manager, was also
exceedingly convoluted.

• The development team choses a 3-weeks Sprint span
based on unusualness with Agile in overall, the
remark that tasks and stories might be bigger than in
other developments and the understanding that
development team members could not protection for
separately well due to concentration.

• Complete system policy was incremental.
• Functionalities were prioritized and done in priority

mandate.
• The Product Owner and end-users were convoluted

on a daily basis.

Challenges to Standard Agile Performs

• The programmers were extremely focused in their
technologies.

• Cross-training was inadequate by a vertical learning
curve.

• Automated testing was measured to be unbearable.
Our team thought this at inordinate length. At the unit
phase, well – what is unit in COBOL? It is a structured
programming language. Programs are enormous,
massive. Accumulates yield an extended period. It is
dangerous to run just portion of the code. Testing is
done by moving through a debugger and trifling with
capricious principles in recollection. This does not loan
itself to computerization. Our team observed into
screen footage and repetition, which is conceivable,
but the subsequent writings are tremendously friable.
In the termination, the competent cost of enquiry was
too high for the little project timeline.

• Consuming a small development team did reason
some postponements when individuals were
absentminded.

What We Got

• Throughout backlog estimate, explanation of a story
was short-circuited when it developed deceptive that
the business was asking for something that was
technically unbearable within the downstream host
organism. The story, primarily estimated to be
moderately large, was merely released. The Product
Owner was not troubled at the loss of the features
given the fundamentally unlimited cost of the story
even though it had initially been protuberant in the

inventive project budget. Cost investments were
estimated at approximately 100000 BDT.

• Though planning Sprint 2, another great, high priority
functionality vaporized when the Product Owner
understood that the work done in Sprint 1 caused in
an adequately useful explanation to the box of the
floor. The functionality was a real-time update of data
from one backend system to a front end on additional
system. User testing of the first sprint product
presented that batch explains had satisfactory price
and were much trusting to gadget. Fairy another 100K
BDT saved.

• The development team stroked that these investments
would not have been comprehended in an old-style
project method. The requirements would have been
overheated into a design document and applied as
well as likely without any conversation with the
Professional.

• Variations in other requirements resulted from
nonstop review by the Product Owner and were not a
subject for the programmers.

• The project was small, but still accomplished so
rapidly compared to pre-Agile potentials that the team
stayed together to implement another set of
functionalities out of the possibility of the original
budget.

• The development team, some of who were
incredulous, had pleasurable and appreciated the
attainment. The Professional was very satisfied as fine.

• The pre-Agile approximation of work was 2 years
gone time in this extremely multi-tasked situation. The
Agile project was completed in less than 3 months
thanks to an absorbed determination. Time worth of
currency, which one?

• Cheers to administrative story trimming by the
Product Owner and Sponsor, the product conveyed
formerly than even the original agile estimated release
date.

• Management had a superior familiarity of status
without having status intelligences modestly by
attending the daily stand-up meetings.

Our Statements

So, did Agile work out well for this all-mainframe project?
Indeed, it did. Even though it was not full Extreme Program-
ming in methodological performs, using a Scrum approach
and agile principles resulted in both previous Return on In-
vestment and minor cost. Oh, and everybody had great doing
it – always a respectable signal.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 1024
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

A software process model is a streamlined demonstration of a
software process, presented from a specific perception. A
software process model is an intellectual illustration of a soft-
ware process. Problems solving in software contain of these
activities:

• Finding the problem
• Determining a plot for solution
• Code generating the intended solution
• Testing the authentic program

On behalf of big structures, each movement can be enormous-
ly composite and procedures and procedures are required to
complete it professionally and appropriately. Moreover, each
of the basic undertakings itself may be so big that it cannot be
controlled in particular phase and must be fragmented into
smaller phases. For example, design of a big software struc-
ture is always fragmented into several, discrete design seg-
ments, initially from a very high level design identifying only

the mechanisms in the system to a thorough project where the
logic of the mechanisms is identified [7]. The basic undertak-
ings or segments to be performed for developing a software
structure are-

• Purpose of System’s Requirements
• System Analysis & Design
• Developing or coding of the software
• System Testing as an end user
• System deployment and regular maintenance

Table: Comparison table on Various Process Models

Parameters Process Models Waterfall Scrum Kanban XP

Communication Initial level Frequently Frequently Initial level
Requirement Specifications Initial level Frequently change Frequently change Initial level
Cost Low Much Expensive Much Expensive High
Resource Control Yes No No Yes
Simplicity Simple Complex Complex Intermediate
Risk Analysis Only at beginning Yes Yes Yes
Feedback from User No No No Yes
Customer Priority Nil High High Intermediate
Precondition Requirement clearly de-

fined
No No No

Elasticity No Very High Very High Medium
Practicality Implementation No High High High
Usability Basic Most use now a days Most use now a days Medium

8 FUTURE WORK
1. To identify a suitable knowledge sharing procedure

while accomplishment user centered design in a startup.
2. To test other available software development processes

in a startup such as V-Model, RUP etc. and see how well
it can be applied in a solo developer startup
environment.

9 CONCLUSION
This paper discussed what software process model is and var-
ious process models, also compare them with different para-
meter and highlight the factors for choosing them. This paper
presents the chart based on usage. However, the existing
model still can be improving and modified based on less cost,
time and high efficient. The developer should find out follow-
ing aspects-

1. Find out market analysis that why Agile Models
[Scrum, Kanban & XP] are Popular now a day.

2. How can improve efficiency of given model?

As we discussed on Waterfall, Scrum, Kanban & XP’s advan-
tages and disadvantages, it depends upon the organization
which model to choose.

• If requirement changes frequently and smaller projects, de-
liver product in short period time with skilled resources then
we can choose “Agile model [Scrum, Kanban & XP]”.
• If requirement is clear, larger project then we choose “Wa-
terfall model”.

REFERENCES
[1] Walt Scacchi, “Process Models in Software Engineering”,

Institute for Software Research, University of California, Irvine,
October, 2001.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 1025
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

[2] Watts S. Humphrey and Marc I. Kellner, “Software Process
Modeling: Principles of Entity Process Models”, Technical
Report, New York: ACM Press, pp. 331-342, February 1989.

[3] B. Boehm and D. Port, “Escaping the software tar pit: model
clashes and how to avoid them”, Software Engineering Note,
Volume 24, Issue 1, pp. 36-48, 1999.

[4] Humphrey, W.S. (1990). Managing The Software Process.
Addison –Wesley. U.S.A.

[5] Paulk M, Weber C, Garcia S., Chrissis M. & Bush M.(1993a).
Capability Maturity’ModelFor Software, Version 1.1. SEI-93-TR-
024. Software Engineering Institute, Pittburgh.

[6] Nabil Mohammed Ali Munassar1 and A. Govardhan, A
Comparison Between Five Models Of Software Engineering,
IJCSI International Journal of Computer Science
Issues, Vol. 7, Issue 5, September 2010

[7] Sanjana Taya, Shaveta Gupta, “Comparative Analysis of
Software Development Life Cycle Models”, IJCST Vo l. 2, Issue 4,
Oct-Dec. 2011.

[8] Roger Pressman, Software Engineering: APractitioner’s Approach,
Sixth Edition, McGraw-Hill Publication

[9] Karlm, "Software Lifecycle Models', KTH, 2006.
[10] JENNIFER DORETTE J., Comparing Agile XP and Waterfall

Software Development Processes in two Start-up Companies,
2011.

[11] Sutherland, J.; Schwaber, K. The Scrum Papers: Nut, Bolts, and
Origins of an Agile Framework. 224p. 2011.

[12] Schwaber, K.; Sutherland, J. The Scrum Guide. 2010.
[13] Bona, C. Avaliação de Processos de Software: Um Estudode

Casoem XP e ICONEX. Dissertação (Mestradoem Engenharia de
Produção) – Universidade Federal de Santa Catarina,
Florianópolis – 2002.

[14] Murphy, C. Adaptive Project Management Using Scrum. In:
Methods & Tools - Software Development Magazine
Programming, Software Testing, Project Management, Jobs. 2004.

[15] M. Becker and H. Szczerbicka, “Modeling and optimization of
Kanban controlled manufacturing systems with GSPN including
QN,” in International Conference on Systems, Man, and Cybernetics
’98, vol.1.
IEEE, October 1998, pp. 570–575 vol.1.

[16] L. Chai, “E-based inter-enterprise supply chain Kanban for
demand and order fulfilment management,” in International
Conference on Emerging Technologies and Factory Automation EFTA
’08.IEEE, September
2008, pp. 33–35.

[17] J. Liker, The Toyota Way. New York, NY, USA: McGraw-Hill,
2004.

[18] H. Kniberg, “Kanban vs. Scrum: How to make the most of both,”
2009, http://www.crisp.se/henrik.kniberg/Kanban-vs-Scrum.pdf
[18-Jan-2010].

[19] Sienkiewicz, Maciaszek 2011

IJSER

http://www.ijser.org/

	1 Introduction
	2 Background Study
	3 Software Process Models
	4 Related Work
	5 Problem Statement
	6 Proposal For Comparing Software Development Methodologies
	7 Discussion And Analysis of The Study
	Future Work
	Conclusion
	References

